
 

      

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 11 Nov. 2022,   pp: 1025-1030 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-041110251030     |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 1025 

Evaluation of Load Balancing Techniques 

on Web Servers 
 

1O. L Abraham,2 A, AWaheed &3M. O Ayemowa 
1
ITS Unit, Gateway Polytechnic, Saapade, Ogun State, Nigeria 

2
 Department of Computer Science, Lead City University, Oyo State, Nigeria 

3
Department of Computer Science, Gateway Polytechnic, Saapade, Ogun State, Nigeria 

  

----------------------------------------------------------------------------------------------------------------------------- --------- 

Date of Submission: 21-11-2022                                                                           Date of Acceptance: 30-11-2022 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

ABSTRACT 

Traditional networking architectures have many 

significant limitations that must be overcome to 

meet modern IT requirements. To overcome these 

limitations; Software Defined Networking (SDN) is 

taking place as the new networking approach. One 

of the major issues of traditional networks is that 

they use static switches that cause poor utilization 

of the network resources. Another issue is the 

packet loss and delay in case of switch breakdown. 

This project proposes an implementation of a 

dynamic load balancing algorithm for SDN based 

data center network to overcome these issues. In a 

data center environment, the load balancer is an 

integral part of the networking ecosystem. The 

primary function of a load balancer is to distribute 

traffic among a cluster of servers such that a single 

server does not become over-utilized and ensure 

that critical services keep running. Software 

Defined Networking (SDN) offers a cost-effective 

and flexible approach in implementing a load 

balancer. Moving away from traditional hardware-

based networking approach, this project 

implements load balancing with the help of 

software. The SDN approach reduces the cost, 

offers flexibility in configuration, reduces time to 

deploy, provides automation and facilitates 

building a network without requiring the 

knowledge of any vendor-specific 

software/hardware. A test-bed has been 

implemented using Mininet software to emulate the 

network, and OpenDaylight platform (ODL) as 

SDN controller. Python programming language is 

used to define a fat-tree network topology and to 

write the load balancing algorithm program. 

Finally, iPerf is used to test network performance. 

The network was tested before and after running 

the load balancing algorithm. The testing focused 

on some of Quality of Service (QoS) parameters 

such as throughput, latency, bandwidth, delay, 

jitter, and packet loss between two servers in the 

fat-tree network. The algorithm increased 

throughput with at least 35.8%, and also increased 

the network utilization within the system. 

Keywords: Application Programmable Interface 

(API), Load Balancer, Mininet, OpenFlow, Python, 

Round Robin, Software Defined Networking 

(SDN), Data Plane, Control Plane. 

 

I. INTRODUCTION 
Due to the ongoing growth of web 

applications, there has been an increase in demand 

for online services and information. Given that all 

of these services are web-based and run on servers, 

we may presume that consumers can accurately and 

quickly find the majority of the information they 

need for their everyday lives online. Web servers 

therefore take in client requests, process them, and 

deliver the answers. Additionally, the effectiveness 

and efficiency of web servers impact their ability to 

attract businesses and web developers with features 

like precise and quick client responses. On the 

other hand, the demand placed on web servers has 

an immediate impact on their performance. 

Controlling the strain on the web servers is 

therefore essential. Therefore, it is crucial for 

researchers to design and propose an effective 

system that could handle a large amount of 

demand. The massive and ongoing increase in 

client requests for the services offered by the 

servers is another major contributor to the 

overload. Accordingly, server overcrowding 

impairs a company's ability to attract customers, 

lowers revenue, and damages its reputation
1
. 

Establishing a cluster server is yet another similar 

approach that is frequently utilized in businesses to 

improve performance. However, using a number of 

servers to increase resource availability and 

persistency necessitates a system to evenly balance 

and disperse the incoming demand among servers. 

This approach also aids in reducing the amount of 

traffic that is routed toward a single server inside 



 

      

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 11 Nov. 2022,   pp: 1025-1030 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-041110251030     |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 1026 

the server cluster. In modern web technology, load 

balancing is a crucial component in setting up and 

offering a reliable service. In the meantime, load 

balancing approaches boost the functionality of 

cluster servers by enhancing traffic management, 

reducing response times, increasing throughput, 

and minimizing the burdensome strain on cluster 

servers
2
. 

A load balancer, in general, functions 

similarly to a "traffic controller" for all server and 

routes traffics to an accessible one that can do so 

effectively. This guarantees that requests are met 

quickly and that no server is overworked to the 

point where performance is compromised. The load 

balancer helps an organization choose which server 

can effectively handle the requests in an effort to 

satisfy the application demands. Better user 

experience is produced as a result. The load 

balancer manages the flow of request between the 

servers and the clients by assisting servers in 

moving data effectively. Additionally, it evaluates 

the server's ability to handle requests, and if 

needed, the balancer eliminates the unfit servers or 

machine till their operations are fully restored. 

Traffic are sent to the active servers or machines 

when a failure is experienced on some servers and 

as such tagged as been offline, and when a new 

server is launched, requests are immediately 

forwarded to it
3
. To determine which load 

balancing strategies work best in each situation, a 

number of them will be tested and their impact on 

the web server analyzed. 

 

Statement of the Problem 

Web server application performance, web 

traffic, and congestion management become issues 

due to the rise in web users as demands on internet 

services and information grow steadily as a result 

of continual expansion of web applications. For a 

network to transmit data with high throughput and 

minimal delay, network resources must be 

managed dynamically. Static switches are used in 

conventional networks. These networks have the 

drawback that every flow/request follows a single, 

preset route through the network
5
. Packets typically 

drop when a switch fails until a replacement 

routing is chosen. Poor network resource use, 

where alternate links to the destination are inactive, 

is another problem. 

 

Aim and Objectives 

This study is aimed at examining different load 

balancing techniques that may be used in SDN-

based data center networks in order to investigate 

the many ways in which a higher level of 

performance can be achieved.  

The aim is to be achieved by the following 

objectives: to 

i. identify Network Request Distribution load-

balancing approaches. 

ii. implement the various strategies for load 

balancing across the network. 

iii. assess the network impact of each load-

balancing approach. 

 

Significance of the Study  

The primary contribution of this study is it 

to improve the effectiveness, performance, and 

dependability of web servers and so contributes to 

the maximization of customer satisfaction. 

 

Scope of the Project 
In order to deliver and maintain high 

throughput and low latency on the network, this 

study is meant to distinguish, experiment, and 

assess the effect of load balancing algorithms 

utilizing key performance indicators based on 

multiple parameters. 

 

II. METHODOLOGY 
Research Approach 

This section defines the procedure 

implemented to realize a dynamic load balancing 

method, and as well offers the constituents and 

software implements utilized in this study to 

establish the testbed. 

 

System Design 

In order to exploit the resource 

competence of each connection in a network, the 

load balancing algorithm's task is to balance traffic 

from incoming and outgoing network flows. 

Maintaining awareness of the network's current 

condition is important to accomplish this goal. The 

phases of the load balancing algorithm are 

illustrated in Figure 3.1 below. 

The algorithm's initial phase is to gather 

operational data on the network structure and the 

gadgets therein which includes IP addresses, MAC 

addresses, ports, connections, etc. The succeeding 

phase is to locate path data based on the load-

balancing algorithm. Here, the search needs to be 

limited to a lesser area of the Fat-Tree network 

interlinks in order to identify the shortest routes 

between the basis and target hosts. Next, calculate 

the overall connection cost for each of these routes 

between the root and target hosts. After calculating 

the diffusion overheads of the links, the flows are 

formed based on the least diffusion rate of the links 

at the time. The best route is chosen based on the 

cost, and inert movements are then advanced into 

respective switch in the chosen fitting route. As a 



 

      

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 11 Nov. 2022,   pp: 1025-1030 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-041110251030     |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 1027 

result, each switch along the chosen path will have 

the required flow entries to execute the exchange 

amidst the two termination spots. To end with, the 

application keeps updating this data every minute, 

causing it to be dynamic. 

 

Implementation Overview 

A test-bed has been set up in this study in 

Linux, utilizing Mininet software to simulate the 

network, the open-source OpenDaylight platform 

(ODL) as the SDN controller, Python language to 

design the fat-tree topology and create the load 

balancing set of rules program, and iPerf to 

measure network functioning. The steps in design 

are shown in the diagram below. 

 

Requirement Specification 

Mininet 

Mininet is a network emulator that enables 

rapid prototyping of huge networks on a single host 

computer. On a single Linux kernel, it manages a 

variety of end hosts, switches, routers, and links. 

By executing the same kernel, system, and user 

code on a single system, it leverages lightweight 

virtualization to make the system appear to be a full 

network.  

Mininet main advantages: 

1. Mininet is an open source project. 

2. Custom topologies can be created. 

3. Mininet runs real programs. 

4. Packet forwarding can be customized. 

 

In contrast to simulations, Mininet 

executes actual, unmodified code, including 

application code, OS kernel code, and control plane 

code (both OpenFlow controller code and Open 

vSwitch code), and it connects to real networks 

with ease. 

It is necessary to have a controller 

machine running on a system-working framework, 

such as ODL or POX, in order to create the SDN 

load balancer. With the programming interface in 

OpenFlow, the crucial components of the forwarder 

have a separate control arrangement. For SDN, a 

comprehensive physical foundation that connects 

every component via a secure channel is required, 

and this is costly. 

This project makes use of a specific test 

system to handle this problem. Mininet is a tool 

that simulates Software Defined Networks, which 

allow for quick prototyping of a sizable virtual 

foundation system using a desktop PC. In light of 

programming, it facilitates the use of virtual 

models of flexible systems. For instance, 

OpenFlow quickly associates and updates models 

for Software Defined Networks by using a 

rudimentary virtualization operating system using 

these primitives
1
. A few features of the Mininet are 

the following. 

1. It permits that various scientists autonomously 

test the same system topology. 

2. It permits the testing of a complex topology 

without the need of a physical system. 

3. It incorporates apparatuses to troubleshoot and 

run tests over the system. 

4. It underpins various topologies and 

incorporates an essential arrangement of them. 

5. It gives straightforward Python APIs for 

making and testing systems. 

6. It gives a straightforward and modest path for 

testing systems for the improvement of 

OpenFlow. 

Mininet is more compatible than 

simulators since it uses the application's original 

code, as opposed to simulators, which use test 

code. This facilitates testing and running prior to 

implementation in production. The OpenFlow 

procedure is used in the programming of Mininet 

switches, which makes it effortless to examine and 

amend the code as needed. By issuing a single 

command, it constructs a realistic virtual network 

that functions on an actual kernel, switch, and 

application code on any virtual machine (VM), 

cloud, or native platform
2
. According to the 

OpenFlow website, Mininet is a useful tool for 

developing, sharing, and experimenting with 

OpenFlow and Software-Defined Networking 

systems. 

 

OpenDay Light Controller 
The OpenDaylight controller (ODL) is a 

multi-protocol controller architecture designed for 

SDN dispositions on contemporary varied multi-

vendor links. It is highly accessible, flexible, 

extendable, scalable, and available in several 

languages. ODL is a platform for model-driven 

facility construct that enables users to quickly 

create applications that run on a variety of south-

bound protocols and hardware. 

Additionally, it has internal plugins that expand the 

network's capabilities. For instance, it features 

dynamic plugins that make it possible to acquire 

both network topology and statistics. 

iPerf 

iPerf is a well-known network assessing 

device for evaluating the effectiveness of a network 

link and the bandwidth operation of Transmission 

Control Protocol (TCP) and User Datagram 

Protocol (UDP). The user is capable of completing 

a quantity of assessments that give perception into 

the network's bandwidth disposal, latency, jitter, 

and data loss by changing various timing, buffer, 



 

      

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 11 Nov. 2022,   pp: 1025-1030 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-041110251030     |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 1028 

and protocol parameters (TCP, UDP, SCTP with 

IPv4 and IPv6)
3
. iPerf is open source software that 

works on a variety of operating systems, including 

Linux, UNIX, and Windows. 

 

Programming Language used: Python 

Python was used in this study to express 

the Fat-tree topology in Mininet and to create the 

application for the load balancing technique. 

Python is an object-oriented, interpreted language 

that may be used for a variety of tasks. It has a 

flexible dynamic type system, strong high-level 

data structures, and a clear, understandable syntax
4
. 

Python is a flexible language that can be applied 

interactively, in standalone scripts, for complex 

systems, or as an add-on to already existing 

applications. Windows, Macintosh, and Linux 

computers can all run the language. 

Python can be easily extended through C 

or C++ modules, and it is also capable of been used 

as a library in other programs. Additional system-

specific extensions are available. There is also a 

sizable library of common Python modules. Python 

instructs are substantially littler and therefore are 

quicker to devise than C applications. Python code 

is simpler to deliver, script, and support than Perl 

code. Python is more appropriate for copious or 

more complex projects than TCL is. 

 

Research Methods 

Round-Robin and weighted round-robin 

are the two most popular load balancing 

algorithms. These algorithms, however, are static, 

which means that they are not dynamically 

modified in response to incoming requests. 

Regardless of the scope of the work or the 

administering influence of the resources, the RR 

algorithm distributes the incoming requests in a 

circular pattern to the available resources. The 

WRR algorithm takes the processing capability of 

resources into consideration, and the resource with 

better processing power is given a larger quantity 

of incoming jobs. The dynamic WRR algorithm is 

also used for comparison with these algorithms. 

This method uses the waiting time to determine the 

best server for each new request that is made. 

Using data on the server's processing capacity, task 

length, task priority, and processing time needed 

for servers to complete jobs with equal or higher 

priorities, this algorithm aids in the selection of the 

most appropriate server. Information regarding a 

task, including its duration and priority, is recorded 

once it enters the system. The weight of each server 

is then determined, as was previously described. 

The incoming job is then sent with additional 

weight to the server. The weight of a server 

essentially relates to the length of time needed for 

that particular server to finish the tasks with equal 

or higher priorities in its queue. If the completion 

time is quicker, the weight of the server increases, 

and vice versa. Task migration is carried out when 

a task's runtime varies significantly from expected 

values. By determining which server has the least 

number of jobs with the same or higher priority, the 

high priority task from the overloaded server's 

queue is sent to the under-loaded or ideal server
5
. 

This speeds up the completion of high-priority 

tasks, and the migration helps to improve the 

efficient use of resources. 

 

Waiting Time Calculation 

According to the waiting time to complete 

the subsequent incoming job, each VM is given a 

weight in the proposed method. A VM's weight and 

waiting time have an inverse relationship; a VM 

has a high weight when the waiting time is short 

and vice versa. The proposed method bases the 

calculation of waiting time on the importance of an 

incoming job. Each task has a priority value 

between 1 and 10, and one with a lower integer 

value is regarded as having a high priority. The 

following formula is used to determine each VM's 

waiting time, WTvm: 

Equation (3.1) 

 

where T is a task's execution time and p is 

the task priority. When a VM gets an incoming task 

with priority I the waiting time is determined using 

the equation above. In this experiment, the cloudlet 

with the lowest priority is regarded as having a 

high priority, while the cloudlet with the highest 

priority is regarded as having a low priority
6
. For 

instance, if a job with priority 5 is received, the 

waiting times for tasks with priorities 1, 2, 3, 4, and 

5 are determined. It determines the sum of all tasks' 

execution times whose priority is equal to or higher 

than the entering tasks. 

The execution time of a task is calculated as 

follows: 

Equation (3.2) 

where S represents the cloudlet size in MI (Million 

Instructions) and Vm represents the processing 

capacity of a VM in MIPS (Million Instructions Per 

Second). 

 

 



 

      

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 11 Nov. 2022,   pp: 1025-1030 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-041110251030     |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 1029 

Resource Load Calculation 

To conduct task migration between virtual 

machines, the load of all VMs must be calculated, 

and it must be split into three categories: 

overloaded, under-loaded, or balanced. Calculating 

the overall processing capacity of all VMs (C), 

threshold variance for each VM, and threshold for 

each VM are all necessary steps in doing this 

categorization
7
. The threshold range is computed 

using two variances, Vmin and Vmax. These numbers 

represent a machine's percentage usage; in this 

experiment, we utilized a minimum value of 0.7 

and a maximum value of 0.9.Total capacity of all 

virtual machines is calculated as follows: 

Equation (3.3) 

 

where k represents the number of available virtual 

machines and c represents the processing capacity 

of a VM. Threshold for each VM is calculated as 

follows: 

Equation (3.4) 

 

whereVmin represents the minimum variance, L 

represents the total capacity of a node, and n 

represents the total number of virtual machines. 

Tmin represents the minimum threshold value of a 

VM. 

Equation (3.5) 

 

where Vmax represents the minimum variance and 

Tmax represents the maximum threshold value of a 

VM. 

The VMs are classified by using the following 

equations: 

 
Any virtual machine (VM) that exceeds 

the threshold level is regarded as being overloaded. 

A VM with a load that is below the threshold level 

receives the task migration from an overloaded 

VM. The under-loaded VM is prepared to accept 

the task until it hits the threshold level. No 

migration is conducted if there are no under-loaded 

VMs. According to the proposed method, the VM 

that has the least number of tasks with equal or 

higher priorities is chosen as the under-loaded VM. 

 

Implementation of Round-Robin Algorithm 

The round-robin algorithm's step-by-step 

procedure is given in Algorithm 1. Among static 

algorithms, this is one of the most frequently 

applied. The incoming requests are cycled through 

the servers according to this algorithm. The first 

request is assigned to any random server, and the 

following requests are processed in cyclic order. 

For perfect static conditions, cloud service 

providers frequently utilize this algorithm. 

 

III. CONCLUSIONS 
In laboratory conditions, the test scenario 

are performed in which the testbed environment 

was composed of a minimum number of devices 

needed to realize the project objectives. This 

approach produces a particular limit in terms of 

results - they could be different if it the testing 

were performed in a realistic or cloud environment. 

As software-defined network is developed to 

manage large networks like WAN, cloud 

computing technologies like data center, big data 

etc. Growth in today's network leads to large 

amount of traffic on the link due to which 

performance and efficiency of the network 

degrades. The algorithm is not analyzed over such 

a big network. One can check the performance on 

these networks and update the algorithm according 

to the experimental results. 

 

Contribution to Knowledge 
Software-defined networking (SDN) load 

balancing removes the protocols at the hardware 

level to allow for improved network management 

and diagnosis. SDN controller load balancing 

makes data path control decisions without having 

to rely on algorithms defined by traditional network 

equipment. An SDN-based load balancer saves 

running time by having control over an entire 

network of application and web servers. Load 

balancing in SDN leads to discovery of the best 

pathway and server for the fastest delivery of 

requests. 

 

REFRENCES 
[1]. Afolabi, I.; Prados-Garzon, J.; Bagaa, M.; 

Taleb, T.; Ameigeiras, P. Dynamic 



 

      

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 11 Nov. 2022,   pp: 1025-1030 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-041110251030     |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal     Page 1030 

ResourceProvisioning of a Scalable E2E 

Network Slicing Orchestration System. 

IEEE Trans. Mob. Comput. 2020, 19, 

2594–2608. 

[2]. Boutaba, R.; Salahuddin, M.; Limam, N.; 

Ayoubi, S.; Shahriar, N.; Estrada-Solano, 

F.; Caicedo 

[3]. Rendon, O. A Comprehensive Survey on 

Machine Learning for Networking: 

Evolution, Applications and Research 

Opportunities. J. Internet Serv. Appl. 

2018, 9, 1–99.  

[4]. Casas-Velasco, D.M.; Rendon, O.M.C.; da 

Fonseca, N.L.S. DRSIR: A Deep 

ReinforcementLearning Approach for 

Routing in Software-Defined Networking. 

IEEE Trans. Netw. Serv. Manag. 2021, 1–

14. 

 

[5]. Dixit A., Fang H., Mukherjee S., 

Lakshman T.V., Kompella R.R., 

“ElastiCon: an elasticDistributed sdn 

controller,” Proceedings of the tenth 

ACM/IEEE symposium on Architectures 

for networking and communications 

systems, ACM, 2014, pp. 17-28. 

[6]. Fu X., Yu F.R., Wang J, Qi Q. and Liao J., 

“Service Function Chain Embedding for 

NFV-Enabled 

[7]. IoT Based on Deep Reinforcement 

Learning,” IEEE Communications 

Magazine, 2019, vol. 57, no. 1, pp. 102-

108. 

[8]. Jamali S., Badirzadeh A., Siapoush M.S., 

“On the use of the genetic programming 

for balanced 

[9]. Load distribution in software-defined 

networks,” Digital Communications and 

Networks, 2019, vol. 5, no. 4, pp. 288–

296. 

[10]. Khan, A.; Abolhasan, M.; Ni, W.; 

Lipman, J.; Jamalipour, A. An End-to-End 

(E2E) Network 

[11]. Slicing Framework for 5G Vehicular Ad-

Hoc Networks. IEEE Trans. Veh. 

Technol. 2021, 70, 7103–7112. 

[12]. Wireless networks,” International Journal 

of Distributed Sensor Networks, 2015, pp. 

1-8. 

[13]. Yan, M.; Feng, G.; Zhou, J.; Sun, Y.; 

Liang, Y.C. Intelligent Resource 

Scheduling for 5G  

[14]. RadioAccess Network Slicing. IEEE 

Trans. Veh. Technol. 2019, 68, 7691–

7703.  

[15]. Yang C.-T., Chen S.-T., Liu J.-C., Su Y.-

W., Puthal D., and Ranjan R., “A 

predictive loadBalancing technique for 

software defined networked cloud 

services,” Computing, 2019, vol. 101, no. 

3, pp. 211–235. 

[16]. Zhang P., Wang C., Qin Z. and Cao H., 

“A multi-domain virtual network 

embedding algorithm 

[17]. Based on multi-objective optimization for 

Internet of Drones architecture in Industry 

4.0,” SoftwPractExper, 2020, pp. 1-19. 

 

 


